If it's not what You are looking for type in the equation solver your own equation and let us solve it.
21x^2-28x+7=0
a = 21; b = -28; c = +7;
Δ = b2-4ac
Δ = -282-4·21·7
Δ = 196
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{196}=14$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-28)-14}{2*21}=\frac{14}{42} =1/3 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-28)+14}{2*21}=\frac{42}{42} =1 $
| 13t+2=8 | | Z-13+z+10=360 | | -11+3b=7 | | 4x-1+3x=5x+4+105 | | r+11=-21 | | -7x+11=x+75. | | 5r-3=3r+5 | | 2x^2+3x-243=0 | | 6c-11=2c+59 | | x+2.5x=18 | | m^2+3-12m=0 | | r-11=-21 | | 29-2(3-5w)=13 | | -4y+2=-2= | | 6x^2=5x=6 | | 3(2x-14)=-3(-13+x | | 3w-4=5w-2 | | 7x-2+2x=5(x+6) | | 8(4+x)+x=8+x | | 4x+3(x-2)=-10+5x | | 12/3+3x=4/5x+15 | | x=1+22 | | 3x+10+2x=2(x+10) | | 4x3(x-2)=-10+5x | | n=0.733(12)+8.398 | | (4x+70)+(9x-30)=180 | | 10x=2(3x+10) | | 4x=6.5 | | (n/6)-16=5 | | 5(x-2)+3x=20-2x | | 9x-10+5x=2(3x+7) | | 12.3+x=-7.5 |